Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611875

RESUMO

Mamey (Mammea americana L.) is a tropical fleshy fruit native from the West Indies and northern South America. It is very appreciated for its flavor and color but has been little described. The present study investigates the composition and histochemistry of the pulp cell walls of three mamey accessions readily available in Martinique. The impact of pulp processing into puree on cell wall composition is evaluated. The histology and rheology of mamey puree are assessed considering these characterizations. Mamey pulp cell wall composition is dominated by highly methyl-esterified pectins (DM: 66.2-76.7%) of high molecular weight, and show few hemicelluloses, mainly xyloglucans. Processing reduced methyl-esterified uronic acid contents and gave purees with significantly different viscosities. Mamey puree was composed of polydisperse particles (20-2343 µm), which size distributions were different depending on the accession: Ti Jacques was dominated by smaller particles (50% had approximated diameters lower than 160 µm), Sonson's by larger particles (50% had approximated diameters higher than 900 µm), and Galion's had an intermediate profile. This new knowledge on mamey pulp is valuable for future works on mamey processing into new food products, even more so for those including cell wall polysaccharide-degrading enzymes.


Assuntos
Mammea , Parede Celular , Alimentos , Histocitoquímica , Peso Molecular
2.
Nat Plants ; 10(3): 494-511, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38467800

RESUMO

Pressurized cells with strong walls make up the hydrostatic skeleton of plants. Assembly and expansion of such stressed walls depend on a family of secreted RAPID ALKALINIZATION FACTOR (RALF) peptides, which bind both a membrane receptor complex and wall-localized LEUCINE-RICH REPEAT EXTENSIN (LRXs) in a mutually exclusive way. Here we show that, in root hairs, the RALF22 peptide has a dual structural and signalling role in cell expansion. Together with LRX1, it directs the compaction of charged pectin polymers at the root hair tip into periodic circumferential rings. Free RALF22 induces the formation of a complex with LORELEI-LIKE-GPI-ANCHORED PROTEIN 1 and FERONIA, triggering adaptive cellular responses. These findings show how a peptide simultaneously functions as a structural component organizing cell wall architecture and as a feedback signalling molecule that regulates this process depending on its interaction partners. This mechanism may also underlie wall assembly and expansion in other plant cell types.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Peptídeos/metabolismo , Plantas/metabolismo , Parede Celular/metabolismo , Raízes de Plantas/metabolismo
3.
Carbohydr Polym ; 334: 122029, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553229

RESUMO

To investigate the incubation conditions encountered by enzymes in cereal-based product transformation processes, this study aims to provide comprehensive information on the effect of low (18 %) to high (72 %) solid loading on the behavior of bacterial and fungal xylanases towards wheat grain fractions, i.e. white flour, ground whole grain and bran. Both enzymes are effective from 30 % water content. A water content of 50 % appears as the threshold for optimal arabinoxylan solubilisation. The specificity of enzymes was influenced by low hydration conditions, particularly in wheat bran, which contains arabinoxylan with diverse structures. Especially the bacterial xylanase became more tolerant to arabinose substitution as the water content decreased. Time Domain-NMR measurements revealed four water mobility domains in all the fractions. The water populations corresponding to 7.5 nm to 15 nm pores were found to be the most restrictive for enzyme activity. These results define the water content limits for the optimal xylanase action in cereal products.


Assuntos
Endo-1,4-beta-Xilanases , Xilanos , Endo-1,4-beta-Xilanases/química , Xilanos/química , Fibras na Dieta/análise , Farinha , Espectroscopia de Ressonância Magnética , Grão Comestível/química , Água
4.
Science ; 382(6671): 719-725, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943924

RESUMO

Assembly of cell wall polysaccharides into specific patterns is required for plant growth. A complex of RAPID ALKALINIZATION FACTOR 4 (RALF4) and its cell wall-anchored LEUCINE-RICH REPEAT EXTENSIN 8 (LRX8)-interacting protein is crucial for cell wall integrity during pollen tube growth, but its molecular connection with the cell wall is unknown. Here, we show that LRX8-RALF4 complexes adopt a heterotetrametric configuration in vivo, displaying a dendritic distribution. The LRX8-RALF4 complex specifically interacts with demethylesterified pectins in a charge-dependent manner through RALF4's polycationic surface. The LRX8-RALF4-pectin interaction exerts a condensing effect, patterning the cell wall's polymers into a reticulated network essential for wall integrity and expansion. Our work uncovers a dual structural and signaling role for RALF4 in pollen tube growth and in the assembly of complex extracellular polymers.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Parede Celular , Pectinas , Tubo Polínico , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Pectinas/química , Pectinas/metabolismo , Peptídeos/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo
5.
Int J Biol Macromol ; 245: 125488, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37353113

RESUMO

Model systems are needed to provide controlled environment for the understanding of complex phenomena. Interaction between polysaccharides and proteins in dense medium are involved in numerous complex systems such as biomass conversion or plant use for food processing or biobased materials. In this work, cellulose nanocrystals (CNCs) were used to study proteins in a dense and organized cellulosic environment. This environment was designed within microdroplets using a microfluidic setup, and applied to two proteins, bovine serum albumin (BSA) and a GH7 endoglucanase, relevant to food and plant science, respectively. The CNC at 56.5 g/L organized in liquid crystalline structure and the distribution of the proteins was probed using synchrotron deep-UV radiation. The proteins were homogeneously distributed throughout the volume, but BSA significantly disturbed the droplet global organization, preferring partition in hydrophilic external micelles. In contrast, GH7 partitioned with the CNCs showing stronger non-polar interaction but without disruption of the system organization. Such results pave the road for the development of more complex polysaccharides - proteins in-vitro models.


Assuntos
Celulose , Nanopartículas , Celulose/química , Polissacarídeos , Soroalbumina Bovina/química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química
6.
Plant Cell ; 35(8): 3073-3091, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37202370

RESUMO

Polygalacturonases (PGs) fine-tune pectins to modulate cell wall chemistry and mechanics, impacting plant development. The large number of PGs encoded in plant genomes leads to questions on the diversity and specificity of distinct isozymes. Herein, we report the crystal structures of 2 Arabidopsis thaliana PGs, POLYGALACTURONASE LATERAL ROOT (PGLR), and ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2 (ADPG2), which are coexpressed during root development. We first determined the amino acid variations and steric clashes that explain the absence of inhibition of the plant PGs by endogenous PG-inhibiting proteins (PGIPs). Although their beta helix folds are highly similar, PGLR and ADPG2 subsites in the substrate binding groove are occupied by divergent amino acids. By combining molecular dynamic simulations, analysis of enzyme kinetics, and hydrolysis products, we showed that these structural differences translated into distinct enzyme-substrate dynamics and enzyme processivities: ADPG2 showed greater substrate fluctuations with hydrolysis products, oligogalacturonides (OGs), with a degree of polymerization (DP) of ≤4, while the DP of OGs generated by PGLR was between 5 and 9. Using the Arabidopsis root as a developmental model, exogenous application of purified enzymes showed that the highly processive ADPG2 had major effects on both root cell elongation and cell adhesion. This work highlights the importance of PG processivity on pectin degradation regulating plant development.


Assuntos
Arabidopsis , Poligalacturonase , Poligalacturonase/genética , Poligalacturonase/metabolismo , Arabidopsis/metabolismo , Pectinas/metabolismo , Proteínas/metabolismo , Parede Celular/metabolismo
7.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047802

RESUMO

Seeds of the model grass Brachypodium distachyon are unusual because they contain very little starch and high levels of mixed-linkage glucan (MLG) accumulated in thick cell walls. It was suggested that MLG might supplement starch as a storage carbohydrate and may be mobilised during germination. In this work, we observed massive degradation of MLG during germination in both endosperm and nucellar epidermis. The enzymes responsible for the MLG degradation were identified in germinated grains and characterized using heterologous expression. By using mutants targeting MLG biosynthesis genes, we showed that the expression level of genes coding for MLG and starch-degrading enzymes was modified in the germinated grains of knocked-out cslf6 mutants depleted in MLG but with higher starch content. Our results suggest a substrate-dependent regulation of the storage sugars during germination. These overall results demonstrated the function of MLG as the main carbohydrate source during germination of Brachypodium grain. More astonishingly, cslf6 Brachypodium mutants are able to adapt their metabolism to the lack of MLG by modifying the energy source for germination and the expression of genes dedicated for its use.


Assuntos
Brachypodium , Glucanos , Glucanos/metabolismo , Amido/metabolismo , Brachypodium/genética , Brachypodium/metabolismo , Germinação/genética , Endosperma/genética , Endosperma/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo
8.
Polymers (Basel) ; 15(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36850104

RESUMO

This study focuses on the use of tomato (Solanum lycopersicum L.) by-product biomass from industrial plants as reinforcement for designing a range of new degradable and biobased thermoplastic materials. As a novel technique, this fully circular approach enables a promising up-cycling of tomato wastes. After an in-depth morphological study of the degree of reinforcement through SEM and dynamic analysis, mechanical characterization was carried out. Our mechanical results demonstrate that this circular approach is of interest for composite applications. Despite their moderate aspect ratio values (between 1.5 and 2), the tomato by-product-reinforced materials can mechanically compete with existing formulations; PBS-Tomato fiber, for example, exhibits mechanical performance very close to that of PP-flax, especially regarding strength (+11%) and elongation at break (+6%). According to the matrix and particle morphology, a large range of products-biobased and/or degradable, depending on the targeted application-can be designed from tomato cultivation by-products.

9.
Biomacromolecules ; 24(1): 358-366, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36525635

RESUMO

Hydrogels were prepared at high solid contents (70-100 g/L) with cellulose nanocrystals (CNC) and very short xyloglucans (XGs). At 70 g/L, CNCs form cholesteric liquid crystals regularly spaced by a distance of 30 nm. This structure was preserved after adsorption of XG with a molar mass (Mw) of 20,000 g/mol (XG20) but was lost at 40,000 g/mol (XG40). Rheological measurements discriminated domains where an increasing Mw from XG20 to XG40 gave rise to drastic changes in storage moduli (on 3 orders of magnitude). At 40,000 g/mol, transient systems were obtained and a re-entrant glass-gel-glass transition was observed with increasing XG concentrations. This was interpreted in terms of the length and stiffness of the chain in relation to the inter-CNC distance. Liquid-to-glass-to-gel transitions were attributed to an XG adsorption type according to train or trail conformations or interconnected structures. Such tunable properties may further have implications on the in vivo role of XG during cell wall extension.


Assuntos
Celulose , Nanopartículas , Celulose/química , Suspensões , Glucanos/química , Nanopartículas/química
10.
Carbohydr Res ; 521: 108661, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36058116

RESUMO

Structural elucidation of plant cell wall xyloglucan through the analysis of enzymatically produced fragments requires detailed knowledge of enzymes hydrolytic mechanism. In this note, the mode of action and cleavage site of commercial recombinant xyloglucanases (GH74, Paenibacillus sp.) was studied on native and fluorescent-tagged tamarind xyloglucan. In complement to information provided by the manufacturer, GH74 hydrolysis was shown dual endo/exo- and exo-processive with low affinity towards labelled reducing-ends. GH74 accommodated X/G in its subsite -1 and X/L in its subsite +1. Moreover, hydrolysis kinetic indicated a GH74 activity inhibition by excess products. These results will help for application of this enzyme in xyloglucans structural analysis or for processing cell walls.


Assuntos
Tamarindus , Glucanos , Glicosídeo Hidrolases/metabolismo , Sementes , Especificidade por Substrato , Tamarindus/metabolismo , Xilanos/química , Xilanos/farmacologia
11.
Viruses ; 14(5)2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35632806

RESUMO

To evaluate the diagnostic performance of the Liaison® Murex anti-HEV IgM and IgG assays running on the Liaison® instrument and compare the results with those obtained with Wantai HEV assays. We tested samples collected in immunocompetent and immunocompromised patients during the acute (HEV RNA positive, anti-HEV IgM positive) and the post-viremic phase (HEV RNA negative, anti-HEV IgM positive) of infections. The specificity was assessed by testing HEV RNA negative/anti-HEV IgG-IgM negative samples. The clinical sensitivity of the Liaison® IgM assay was 100% for acute-phase samples (56/56) and 57.4% (27/47) for post-viremic samples from immunocompetent patients. It was 93.8% (30/32) for acute-phase (viremic) samples and 71%% (22/31) for post-viremic samples from immunocompromised patients. The clinical sensitivity of the Liaison® IgG assay was 100% for viremic samples (56/56) and 94.6% (43/47) for post-viremic samples from immunocompetent patients. It was 84.3% (27/32) for viremic samples and 93.5% (29/31) for post-viremic samples from immunocompromised patients. Specificity was very high (>99%) in both populations. We checked the limit of detection stated for the Liaison® IgG assay (0.3 U/mL). The clinical performance of the Liaison® ANTI-HEV assays was good. These rapid, automated assays for detecting anti-HEV antibodies will greatly enhance the arsenal for diagnosing HEV infections.


Assuntos
Vírus da Hepatite E , Anticorpos Anti-Hepatite , Vírus da Hepatite E/genética , Humanos , Imunoglobulina G , Imunoglobulina M , RNA , Sensibilidade e Especificidade
12.
Carbohydr Polym ; 278: 118942, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973760

RESUMO

Heteroxylans (HX) from vitreous and floury parts of maize endosperm were isolated. Structural analysis showed a xylan backbone with few unsubstituted xylose residues (<9%) demonstrating the high content in side chains in both fractions. HX from floury endosperm contained more arabinose and galactose than vitreous HX. The mono-substitution rate was 15% higher in the vitreous endosperm HX. Similar amounts of uronic acids were present in both fractions (~7% DM). Galactose in the floury endosperm HX was present exclusively in terminal position. A xylanase preparation solubilized more material from floury (40.5%) than from vitreous endosperm cell walls (15%). This could be a consequence of the structural differences between the two fractions and/or of the impact of structure on the interaction abilities of these fractions with other cell wall polysaccharides. Our study advances the understanding of cell wall polysaccharides in maize endosperm and their role in enzymatic susceptibility of maize grain.


Assuntos
Endo-1,4-beta-Xilanases/metabolismo , Endosperma/metabolismo , Farinha , Amido/metabolismo , Xilanos/metabolismo , Zea mays/metabolismo , Endosperma/química , Amido/química , Xilanos/química , Zea mays/química
13.
Biotechnol Biofuels ; 14(1): 107, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910612

RESUMO

BACKGROUND: Pectin plays a role in the recalcitrance of plant biomass by affecting the accessibility of other cell wall components to enzymatic degradation. Elimination of pectin consequently has a positive impact on the saccharification of pectin-rich biomass. This work thus focused on the behaviour of different pectin-degrading enzymes in the presence of low (5%) to high (35%) solid loading of lemon peel. RESULTS: High solid loading of lemon peel affected pectin solubilisation differently depending on the pectinase used. Pectin lyase was less sensitive to a reduction of water content than was a mixture of endopolygalacturonase and pectin methylesterase, regardless of whether or not the latter's mode of action is processive or not. Marked changes in water mobility were observed along with enzymatic degradation depending on the enzyme used. However, the pectin lyase resulted in less pronounced shifts in water distribution than polygalacturonase-pectin methylesterase mixtures. At similar pectin concentration, pectin solutions hindered the diffusion of hydrolases more than the solid substrate. This can be attributed to the high viscosity of the highly concentrated pectin solutions while the solid substrate may provide continuous diffusion paths through pores. CONCLUSIONS: The increase in solid substrate loading reduced the efficiency of pectin-degrading enzymes catalysing hydrolysis more significantly than those catalysing ß-elimination. LF-NMR experiments highlighted the impact of solid loading on water mobility. Compared to other enzymes and whatever the solid loading, pectin lyase led to longer relaxation times linked with the most destructuration of the solid substrate. This new information could benefit the biorefinery processing of pectin-rich plant material when enzymes are used in the treatment.

14.
Carbohydr Polym ; 263: 117932, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33858566

RESUMO

According to the high interest in agro-industrial waste reutilisation, underutilised lignocellulosic materials, such as walnut shell (WS) and pea pod (PP), come in focus. The aim of this paper was to evaluate WS and PP as sources for the production of xylooligosaccharides (XOS). Hemicelluloses from WS and PP were recovered by combining varying parameters of delignification and alkaline extraction. At optimal recovery conditions, the fractions were further hydrolysed to XOS using GH11 endo-xylanase, by varying time and enzyme concentration. Xylose was predominant in the monomeric composition of the obtained hemicelluloses, building low-branched (arabino)glucuronoxylan, in WS exclusively, while in PP some xyloglucan as well. Delignification was essential for high recovery of total xylose from the materials, up to at least 70 %. High xylan conversions were obtained for 24 h hydrolysis, resulting in xylobiose and xylotriose when using low enzyme concentration, while in xylose and xylobiose with high enzyme concentration.


Assuntos
Fracionamento Químico/métodos , Glucuronatos/química , Juglans/química , Juglans/metabolismo , Oligossacarídeos/química , /metabolismo , Glucuronatos/isolamento & purificação , Hidrólise , Juglans/anatomia & histologia , Oligossacarídeos/isolamento & purificação , Extratos Vegetais/química , Polissacarídeos/química , Polissacarídeos/metabolismo , Açúcares/análise , Xilanos/química , Xilanos/isolamento & purificação , Xilose/análise , Xilose/isolamento & purificação , Xilose/metabolismo
15.
Biotechnol Biofuels ; 14(1): 1, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33402195

RESUMO

BACKGROUND: The recalcitrance of lignocellulosics to enzymatic saccharification has been related to many factors, including the tissue and molecular heterogeneity of the plant particles. The role of tissue heterogeneity generally assessed from plant sections is not easy to study on a large scale. In the present work, dry fractionation of ground maize shoot was performed to obtain particle fractions enriched in a specific tissue. The degradation profiles of the fractions were compared considering physical changes in addition to chemical conversion. RESULTS: Coarse, medium and fine fractions were produced using a dry process followed by an electrostatic separation. The physical and chemical characteristics of the fractions varied, suggesting enrichment in tissue from leaves, pith or rind. The fractions were subjected to enzymatic hydrolysis in a torus reactor designed for real-time monitoring of the number and size of the particles. Saccharification efficiency was monitored by analyzing the sugar release at different times. The lowest and highest saccharification yields were measured in the coarse and fine fractions, respectively, and these yields paralleled the reduction in the size and number of particles. The behavior of the positively- and negatively-charged particles of medium-size fractions was contrasted. Although the amount of sugar release was similar, the changes in particle size and number differed during enzymatic degradation. The reduction in the number of particles proceeded faster than that of particle size, suggesting that degradable particles were degraded to the point of disappearance with no significant erosion or fragmentation. Considering all fractions, the saccharification yield was positively correlated with the amount of water associated with [5-15 nm] pore size range at 67% moisture content while the reduction in the number of particles was inversely correlated with the amount of lignin. CONCLUSION: Real-time monitoring of sugar release and changes in the number and size of the particles clearly evidenced different degradation patterns for fractions of maize shoot that could be related to tissue heterogeneity in the plant. The biorefinery process could benefit from the addition of a sorting stage to optimise the flow of biomass materials and take better advantage of the heterogeneity of the biomass.

16.
J Sci Food Agric ; 101(5): 1910-1919, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32895949

RESUMO

BACKGROUND: Cereal co-products rich in dietary fibres are increasingly used in animal feed. The high fibre content decreases the digestibility and reduces the nutrient and energy availability, resulting in lower nutritive value. Therefore, this study investigated the ability of two carbohydrase complexes to solubilize cell-wall polysaccharides, in particular arabinoxylan (AX), from different cereal fractions of wheat, maize, and rice using an in vitro digestion model of the pig gastric and small intestinal digestive system. The first complex (NSPase 1) was rich in cell-wall-degrading enzymes, whereas the second complex (NSPase 2) was additionally enriched with xylanases and arabinofuranosidases. The extent of solubilization of insoluble cell-wall polysaccharides after in vitro digestion was evaluated with gas-liquid chromatography and an enzymatic fingerprint of the AX oligosaccharides was obtained with high-performance anion-exchange chromatography with pulsed amperometric detection. RESULTS: The addition of carbohydrase increased the digestibility of dry matter and solubilized AX in particular, with the greatest effect in wheat fractions and less effect in maize and rice fractions. The solubilization of AX (expressed as xylose release) ranged from 6% to 41%, and there was an increased effect when enriching with xylanases and arabinofuranosidases in wheat aleurone and bran of 19% and 14% respectively. The enzymatic fingerprint of AX oligosaccharides revealed several non-final hydrolysis products of the enzymes applied, indicating that the hydrolysis of AX was not completed during in vitro digestion. CONCLUSION: These results indicate that the addition of a carbohydrase complex can introduce structural alterations under in vitro digestion conditions, and that enrichment with additional xylanases and arabinofuranosidases can boost this effect in wheat, maize, and rice. © 2020 Society of Chemical Industry.


Assuntos
Endo-1,4-beta-Xilanases/química , Glicosídeo Hidrolases/química , Intestino Delgado/metabolismo , Oryza/química , Triticum/química , Zea mays/química , Ração Animal/análise , Animais , Fibras na Dieta/análise , Digestão , Técnicas In Vitro , Intestino Delgado/enzimologia , Oryza/metabolismo , Suínos , Triticum/metabolismo , Zea mays/metabolismo
17.
J Agric Food Chem ; 68(37): 9878-9887, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32815725

RESUMO

The high fiber content of cereal coproducts used in animal feed reduces the digestibility and nutrient availability. Therefore, the aim of this study was to elucidate the ability of two carbohydrase complexes to degrade the cell wall of wheat, maize, and rice during in vitro digestion. One complex was rich in cell-wall-degrading enzymes (NSPase 1), and the other was similar but additionally enriched with xylanases and arabinofuranosidases (NSPase 2). Degradation of arabinoxylan, the main cereal cell wall polysaccharide, was followed directly by gas-liquid chromatography (GLC) and indirectly through phenolic acid liberation as quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The effect was additionally visualized using a unique multispectral autofluorescence approach. Wheat fractions, in particular aleurone, were susceptible to degradation as judged from the redistribution of arabinoxylan (25% reduction in insoluble arabinoxylan), whereas the highest relative liberation of ferulic acid was observed in rice bran (6%). All cereal fractions, except for maize, had a higher release of ferulic acid with NSPase 2 than NSPase 1 (38% in rice and wheat bran, 30% in wheat whole grain, and 28% in wheat aleurone). Thus, the carbohydrase complexes were able to degrade important cell wall components during in vitro digestion but apparently through different mechanisms in wheat, maize, and rice.


Assuntos
Endo-1,4-beta-Xilanases/metabolismo , Glicosídeo Hidrolases/metabolismo , Hidroxibenzoatos/metabolismo , Oryza/metabolismo , Triticum/metabolismo , Zea mays/metabolismo , Ração Animal/análise , Animais , Parede Celular/química , Parede Celular/enzimologia , Parede Celular/genética , Carboidratos da Dieta/metabolismo , Fibras na Dieta/análise , Fibras na Dieta/metabolismo , Digestão , Endo-1,4-beta-Xilanases/química , Fluorescência , Glicosídeo Hidrolases/química , Hidroxibenzoatos/química , Modelos Biológicos , Oryza/química , Oryza/enzimologia , Suínos , Triticum/química , Triticum/enzimologia , Xilanos/química , Xilanos/metabolismo , Zea mays/química , Zea mays/enzimologia
18.
Biotechnol Adv ; 41: 107546, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32275940

RESUMO

Enzymes are essential and ubiquitous biocatalysts involved in various metabolic pathways and used in many industrial processes. Here, we reframe enzymes not just as biocatalysts transforming bioproducts but also as sensitive probes for exploring the structure and composition of complex bioproducts, like meat tissue, dairy products and plant materials, in both food and non-food bioprocesses. This review details the global strategy and presents the most recent investigations to prepare and use enzymes as relevant probes, with a focus on glycoside-hydrolases involved in plant deconstruction and proteases and lipases involved in food digestion. First, to expand the enzyme repertoire to fit bioproduct complexity, novel enzymes are mined from biodiversity and can be artificially engineered. Enzymes are further characterized by exploring sequence/structure/dynamics/function relationships together with the environmental factors influencing enzyme interactions with their substrates. Then, the most advanced experimental and theoretical approaches developed for exploring bioproducts at various scales (from nanometer to millimeter) using active and inactive enzymes as probes are illustrated. Overall, combining multimodal and multiscale approaches brings a better understanding of native-form or transformed bioproduct architecture and composition, and paves the way to mainstream the use of enzymes as probes.


Assuntos
Biodiversidade , Lipase , Enzimas , Glicosídeo Hidrolases , Plantas
19.
Sci Rep ; 9(1): 12551, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467440

RESUMO

The pectin methylesterase action is usually studied in a homogeneous aqueous medium in the presence of a large excess of soluble substrate and water. However in the cell wall, the water content is much lower, the substrate is cross-linked with itself or with other polymers, and the enzyme has to diffuse through the solid matrix before catalysing the linkage breakdown. As plant primary cell walls can be considered as cellulose-reinforced hydrogels, this study investigated the diffusion of a fungal pectin methylesterase in pectin/cellulose gels used as cell wall-mimicking matrix to understand the impact of this matrix and its (micro) structure on the enzyme's diffusion within it. The enzyme mobility was followed by synchrotron microscopy thanks to its auto-fluorescence after deep-UV excitation. Time-lapse imaging and quantification of intensity signal by image analysis revealed that the diffusion of the enzyme was impacted by at least two criteria: (i) only the active enzyme was able to diffuse, showing that the mobility was related to the catalytic ability, and (ii) the diffusion was improved by the presence of cellulose in the gel.

20.
Enzyme Microb Technol ; 127: 6-16, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31088618

RESUMO

To address the need for efficient enzymes exhibiting novel activities towards cell wall polysaccharides, the bacterium Pseudoalteromonas atlantica was selected based on the presence of potential hemicellulases in its annotated genome. It was grown in the presence or not of hemicelluloses and the culture filtrates were screened towards 42 polysaccharides. P. atlantica showed appreciable diversity of enzymes active towards hemicelluloses from Monocot and Dicot origin, in agreement with its genome annotation. After growth on beechwood glucuronoxylan and fractionation of the secretome, a ß-xylosidase, a α-arabinofuranosidase and an acetylesterase activities were evidenced. A GH8 enzyme obtained in the same growth conditions was further cloned and heterologously overexpressed. It was shown to be a xylanase active on heteroxylans from various sources. The detailed study of its mode of action demonstrated that the oligosaccharides produced carried a long tail of un-substituted xylose residues on the reducing end.


Assuntos
Polissacarídeos/metabolismo , Pseudoalteromonas/enzimologia , Xilosidases/isolamento & purificação , Xilosidases/metabolismo , Meios de Cultura/química , Plantas/microbiologia , Pseudoalteromonas/crescimento & desenvolvimento , Pseudoalteromonas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...